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ABSTRACT

Multi-Frequency Modulation has been the topic of several papers at

NPS. In past systems the majority of time required for the generation of

the MFM signal was due to the software routine used to implement the FFT.

In this report a Digital Signal Processor was used to reduce the time

needed to generate the FFT. The use of Trellis coding and Viterbi

decoding on a Digital Signal Processor was also investigated. Assembly

language programs for three encoder/decoder systems were developed.

The first uses a 16 QAM signal, the second uses a 2/3 rate convolutional

encoder and Viterbi decoder and the third uses the V.32 convolutional

encoder and a Viterbi decoder.
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validated. Any application of these programs without additional verification

is at the risk of the user.
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I. INTRODUCTION

There has long been an interest in frequency division multiplexing as

a means of combatting impulsive noise, avoiding equalization and making

fuller use of the bandwidth available. The principle for Multi-Frequency

Modulation (MFM) was first used over thirty years ago in the Collins

Kineplex system. Since that time MFM has been used under many names:

0 multiplexed Quadrature Amplitude Modulation (QAM)

• orthogonal Frequency Division Multiplexing (FDM)

0 dynamically assigned QAM

0 multicarrier modulation

A parallel or multiplexed data system offers the potential to reduce

some of the problems of serial systems. In order to increase the data

rate in a serial system you must utilize higher order modulation or

decrease the symbol interval, increasing the bandwidth, at the risk of

degradating the performance of the system. In a parallel data system

several sequential streams of data are transmitted simultaneously. In a

classical parallel data system there are N non-overlapping subchannels

with each data element occupying only a small portion of the available

bandwidth.

With the continuing development of Digital Signal Processing

technology there has been renewed interest in MFM for possible use in:

* General Switched Telephone Network (GSTN)

* 60-108 Khz Frequency-division Multiplexed (FDM) group band



0 Cellular radio

. High speed data for transmission on the high-rate digital subscriber
line (HDSL)

Multi-Frequency Modulation (MFM) can easily be implemented on a

computer due to the minimal requirements of hardware to construct a

transmitter or receiver. The primary components of a MFM

transmitter/receiver are D/A, A/D converters and a method for computing an

FFT. MFM has been the topic of several papers and projects at NPS using

various techniques for data acquisition and modulation. One of the

primary problems with implementing an MFM system in past projects, has

been the time required to perform an FFT using current software routines.

With the continuing development of Digital Signal Processing (DSP) chips

there exist a great number of DSP boards complete with D/A, A/D

converters, filters, and memory available for industry standard computers.

This provides the capability to purchase an off the shelf item that has

all the necessary components to implement an MFM transmitter/receiver.

Utilizing a DSP board for the computation of the FFT's required for MFM

provides a tremendous performance gain over the software routines that

were used in previous projects. Once the programs are downloaded, the

performance of the DSP board is independent of the performance of the host

computer.

General purpose Digital Signal Processor chips, such as the Motorola

DSP 56001 (which was used in the development of the programs included),

have an architecture ideally suited to the rapid calculation of FFTs. The

56001 is a fixed point Digital Signal Processor which has three internal

memory and address busses which allow the execution of instructions with
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parallel data moves to the X and Y memory locations. This allows the

rapid execution of complex computations. There are also 256 locations of

X and Y Rom that contain Mu-law and A-law expansion tables as well as a

full four quadrant sine wave table.

The first objective of this project is to investigate the use of a DSP

for implementing an MFM system and reduce the time required to generate a

MFM signal. The second objective was to investigate the use of trellis

coding and Viterbi decoding using a Digital Signal Processor.

3



II. THEORY

A. MULTI-FREQUENCY MODULATION

A Multi-Frequency Modulated signal has a packet structure and is

comprised of time and frequency slots.(Figure 1)

Symbol ýBaud I

k1  [ _ _ _ _ __ _ _
' 11k

&T-ff

Harmonic k K ,T-,t"

Figure 1 MFM Signal Packet (from Ref. 1: p.3)

The following definitions will be used for discussing MFM: [Ref. l:pp 5--6]

"• K: Number of MFM tones

"* T: Packet length in seconds



"* AT: Baud length in seconds

4 k.: Baud length in number of samples

* L: Number of bauds per packet

* At: Time between samples in seconds

* •4l/At: Sampling or clock frequency for D/A and A/D conversion in
Hz

0 Af=l/AT: Frequency spacing (minimum) between MFM tones

0 01k: Symbol set. Phase of the kth tone in the lth baud

0 Alk: Amplitude of the kth tone in the Itb baud

Each MFM packet consists of L bauds of K tones. The packet

construction for the Ith baud is given by:[Ref 1: pp 6-7]

x1 (u)- Xlk (U)()

where, the analog representation of each tone during the Ith baud is given

by:

xlk(u)-Alkcos(2:kAfu+÷ojk) ;OuSAT (2)

The time ,u , is referenced from the beginning of the baud. The time at

the beginning of the baud is defined as to and the time at any given point

in the packet is t=t 0+iAT+u.

By sampling (1) and (2) at intervals Atfl/f. a discrete time sampled

version for the 1' baud can be found:

xl (n)n Xlk ) (3)
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where the discrete time version of each tone during the ith baud is given

by:

xlk (n) - Ajkcos(2nkn/kx+*lk) ; Osnk0x-1 (4)

The value, n, is the discrete time referenced to the beginning of the

baud. From the Sampling Theorem the maximum frequency must be less than

fY/2. There are a maximum of kx/2 tones available spaced at intervals of

Af between dc and f,/2-Af. The value of k is in the range from 0 and kx/2,

where k is the harmonic number.

By taking the Discrete Fourier Transform (DFT) of (3):

X, (j) -ý xlk (JC) (5)

The discrete time signal (3) can be generated by the k, point IDFT of (5):

x, (n) -IDFT [X, (k) ' (6)

It is easily seen that the itb baud is generated by taking the IDFT of a

complex valued array of length kx. The values in the array, x](n) are the

discrete time samples of the analog transmit signal. The generation of

the itb baud is completed by clocking the k. samples out at fx samples/sec.

The entire packet is completed by an L fold repetition of the procedure.

B. TRELLIS CODED MODULATION

Trellis coded modulation evolved as a combination of coding and

modulation techniques for digital transmission over band limited channels.

The primary advantage for using trellis coded modulation over other coding

schemes is that significant coding gains can be achieved without

compromising bandwidth efficiency [Ref 2:pp 5-12). Trellis coded
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modulation schemes employ redundant nonbinary modulation in combination

with a finite-state encoder to govern the selection of modulation signals

and to generate coded signal sequences. A simple four state scheme can

improve the reception of a digital transmission by as much 3db in additive

white gaussian noise. If more complex coding schemes are used gains of

6db or more may be achieved. In order to achieve the potential gains of

a trellis coded signal a soft decision decoder, such as a Viterbi decoder,

must be utilized in the receiver. These gains can also be achieved

without reducing the information rate or increasing the bandwidth as

required by conventional error correction schemes.

For low to medium data rates (s 4800 bits/s), signaling methods that

use independent symbol-by-symbol transmission are adequate to provide

acceptably low error rates over voice grade circuits. When data rates

increase in speed (k 9600 bits/s) the same is not true, QAM and optimal

signal sets fail to provide acceptably low error rates.[Ref 3:pp 648-649]

There are many factors which comprise linear and nonlinear distortion

on a voiceband channel including phase jitter, frequency offset and

additive noise. It was shown in that, relative to the uncoded system,

trellis codes with four and eight states provide marked improvement in

performance with respect to additive noise, second and third harmonic

distortion, phase jitter, impulse noise and other channel imparements.[Ref

3:pp 649-651]

For an uncoded system the binary data transmit rate is equal to m/T

bits/sec, where m is the number of bits/symbol and l/T the symbol rate.

In a conventional QAM system (uncoded) there are 21 discrete symbol points

(amplitude and/or phase levels) with each successive symbol transmitted

7



independently. The error performance depends on the minimum distance

between the signal points (the larger the distance, the lower the error

rate). Thp minimum distance at the transmitter is limited by the average

power allowed on the circuit and the choice of the signal points. Even

with the use of in-phase and quadrature components the minimum distance

(dý,) between points decreases with the increase in the number of symbols,

m, and constant average power. This results in a degradation at higher

transmission rates assuming that there is a constant symbol rate.

The objective of coding is to increase the effective minimum distance

between the signals without increasing the average power. One method of

accomplishing this is with the use of convolutional encoder. In a

convolutional encoder there are m current bits, and v past bits used to

develop the codeword. The vpast bits define the state of the encoder and

are operated on to produce m+j bits, the rate of the code is described as

m/m~j. The m+j bits require 2m'j discrete channel symbols. Using a

convolutional encoder the minimum distance between symbols is no longer

the measure of error performance, performance is now a measure of the

minimum distance between the allowed transition of symbols from one state

to another.[Ref 3:p 649] A convolutional encoder using a shift register

to provide two past bits for a 2/3 rate convolutional code is shown in

Figure 2. The allowed transition between states is shown in Figure 3. A

convolutional code can be described as an (n,k,m) code, where n is the

number of encoded bits, k the number of information bits and m the number

of past bits used for encoding.

8



XO YO

Figure 2 2/3 Rate Convolutional
Encoder (from Ref 3:pp 651)

The input and output relationship are depicted by the branches on the

trellis diagram. The upper branch depicts the transition with x0 set to

"0", the lower branch depicts the transition with x0 set to "1". Each

node of the trellis diagram represents one of four states created by the

past bits s, and s2.

WAN AT STATE AT
(k+I)T

00 00

IO U

10 1 1 10

11 - W1W

101

Figure 3 Trellis for 2/3 rate
convolutional code.(from Ref 3:pp 651)

In order to achieve the optimum decoding gains from the use of

convolutional encoders the decoder must use a trace back routine to find

9



the most probable path through the trellis. The rules for bit to symbol

mapping for coded systems:[Ref 3:pp 650]

1. All parallel transitions in the trellis structure receive maximum
possible Euclidean distance in the signal constellation.

2. All transitions diverging from a merging into a trellis state receive

maximum possible Euclidean distance.

C. VITERBI DECODER

The Viterbi decoder utilizes a maximum likelihood sequence estimation

method to decode the incoming data stream. A predetermined measure is

used to determine the symbol sequence which is closest to the received

symbol sequence. At any time, k, the shortest path, called the survivor,

entering each state (node) of the trellis is retained. To proceed to time

k+l, all time k survivors are extended by computing the metrics (lengths)

of the extended path segments based on the calculated branch metrics,

dependent on the branch symbols in the trellis and the value of the

received sample.[Ref 3:pp 648-649] An example of a trellis and a path

through the trellis is shown in Figure 4. The metrics of the remaining

paths are computed and the shortest path retained. The shortest length

into each state, the (k+l) survivor is retained. The number of survivors

never exceeds the number of states in the trellis.

The basic operations required in a soft decision Viterbi decoder

are:[Ref 3:p 651]

, computation of branch metrics, for Pn additive white gaussian noise
channel, are proportional to (r-xi) where r is the received sample
and xi is the noise free symbol associated with the message.

• addition of branch metrics and survivors to determine the survivors
for each state.

10



Figure 4 Trellis diagram for a (3,1,2) code. (from Ref 4:p
316)

comparison along the extended path metrics to determine the survivor

for each state.

It was shown that the Viterbi algorithm was equivalent to a dynamic

programming solution to the problem of finding the shortest path through

a weighted graph [Ref 3:pp 317-321). The decoder must produce an estimate

9 of the codeword v based on the received sequence r. For an information

sequence of length L, the trellis must contain L+m+l levels or time units

to decode the sequence. An (n,k,m) code has an information sequence of

length Ki, and is encoded into a codeword of length N=n(L+m). A maximum

likelihood decoder (MLD) for a discrete memorlless channel (DMC) chooses

11



Sas the codeword v which maximizes the log-likelihood function log

P(rlv). Since for a DM0:

L~m-IN-i

P(.- I V),,- P.j P(.. IVI)- .r.P(z ivI.I) (7)

it follows that log-likelihood function is formed by the summation of the

branch metrics:

Ltm-i N-i.

lOgP(Z I v) - TO1 OgP (z Ivj) - 1o0(.r, I v,) (8)

where P(rilvi) is a channel transition probability. This is a minimum

error probability decoding rule when all code words are equally likely.

The log-likelihood function log P(rlv) are called the metric of path v and

is denoted M(rlv). A partial path metric is formed by summing up the

partial path metrics for j branches and is expressed by:

M( [.r I, V)) -I vJ)

The final survivor 0 in the Viterbi algorithm is the maximum likelihood

path;

M(z I ) >M(z I v), all v 0 9 (10)

The path is then traced back to determine the symbol transmitted.[Ref.

.4:pp 316-318]

12



III. SYSTEM DEVELOPMENT

All the programs used in this thesis were run on an Ariel PC-56 DSP

board. The PC-56 DSP board is an eight bit card that can be used in any

industry standard computer'. The primary components of the PC-56 are a 20

Mhz Motorola DSP 56001, 16k of external memory, a 24 bit bidirectional

interrupt-driven port with a header for external I/0, a TLC32040 14 bit

analog interface chip with built in input and output filters gain section.

An Ariel PC-56D was also used for comparison, it contains a 27 Mhz

Motorola DSP 56001, 64k of external memory and a NEXT compatible DB-15

port. For actual implementation of this system a DSP board with dual A/D

and D/A converters is required.

The structure of the Motorola DSP 56001 makes it ideally suited for

high speed communications. In the DSP chip there are 256 locations of 24

bit x and y memory that occupy the lowest 256 locations of the DSP address

space. The locations from 256-511 are allocated for the on-chip ROM. The

onboard ROM contains Mu-law and A-law expansion tables as well as a full

four quadrant sine table. There are 512 locations of 24 bit high speed

program RAM (PRAM) on the chip.[Ref 5)

A feature that makes the DSP 56001 desirable for use in this system

is that it offers several addressing modes. It implements three types of

arithmetic for addressing, linear, modulo and reverse carry. For each of

the address registers RO-R7 there is an offset register NO-N7 and a

modifier register MO-M7. The offset register contains the values to

increment and decrement the address register. The modifier register

13



defines the type of address arithmetic to be used. For modulo arithmetic

the contents of the modifier register Mn specify the base modulus.[Ref

6:pp 5-2,5-4) The DSP 56001 also provides three different addressing

modes, register direct, address register indirect, and post or pre

increment/decrement.

The basic configuration of an MFM transmitter and receiver are shown

in Figure 5 and Figure 6. For the purpose of this project three types of

modulators were used in the investigation for use on a DSP board. In

previous systems implemented at NPS [Ref 1] and [Ref 7] the complex

conjugate of the input data was loaded into the image frequencies of the

IFFT. This resulted in only real data being generated by the IFFT. For

this project complex data was loaded into all available locations to

generate both real and complex data. The signal mae! be modulated using

any type of modulation scheme. For the purpose of this thesis the three

different modulators used a 16 QAM signal, a 2/3 rate convolutional

encoder with an eight PSK signal and a 4/5 rate code with a 32 QAM signal

using the CCITT modem standard V.32 convolutional encoder. The source

code for the V.32 encoder and Viterbi decoder was included in an example

manual from Motorola [Ref 8:pp Al-C2] for use on their simulator and was

modified for use on the Ariel board to generate a Multi-Frequency

Modulated signal.

14
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A. ENCODERS

Of the 256 bins available in the IFFT array, only 201 message symbols

are carried in each baud. The other 55 bins are loaded with zeros to

allow for filtering of the signal. Once the 256 bins are filled, the IFFT

subroutine is called to generate the values for the MFM signal. At this

point the values would be clocked out through the D/A converters.

1. 16 QAM Encoder

At initialization of the system the message to be transmitted is

downloaded from the host computer as well as the programs for encoding

(QAMl6EN) the signal and the data for the look-up table (16QAMRE.DAT and

16QAMIM.DAT). The data is read in using four bit increments. The value

read in is moved into an offset register and used to determine the

coordinates of the points on the constellation in Figure 7. The real

values of the constellation are stored in the x memory and the

corresponding imaginary values are stored in the y memory. Once the

constellation values are determined the real and complex values are stored

in memory. Once one hundred samples have been read into memory the

routine installs 55 zeros at the center of the array then reads the

remainder of the 256 symbols. Once all 256 samples are stored the IFFT

routine is called to generate the time domain signal.

2. 2/3 Rate Convolutional Encoder

At initialization of the system the message to be sent as well as the

encoder (23ENCOD) and the data files (23REAL.DAT and 231MAG.DAT) are

loaded into memory. In the 2/3 rate encoder two bits are read in from the

input message and using the convolutional encoder of Figure 2 a third bit

16



* 0
1011 loci 1t10 1t

1010 1ow 1100 1101

0001 0000 0100 0110

0M A 0i 00011 0010 0101 0111

Figure 7 CONSTELLATION FOR 16QAM SIGNAL (from
Ref.8:p 2-2)

is generated. The eight PSK constellation in Figure 8 is used to transmit

the message. A look up table is used to find the points on the

constellation. After the points on the constellation are found, the real

1100 \W

" ,' * ...... I ...... IO

Figure 8 2/3 Rate Code
Constellation
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and imaginary values are loaded into an array. After the first 100

samples are loaded into the array, 55 zeros are loaded into the array to

allow for filtering and the remainder of symbols are read. Once all 256

values are loaded the 1FF? is performed and the values are stored ready to

be clocked out.

3. V.32 Convolutional Encoder

At initialization the message, encoder program (MFMENCOD) and data

files (QAMREAL.DAT and QANIMAG.DAT) are downloaded to the to the DSP

board. For the V.32 encoder after the four bit symbol is read, the

convolutional encoder Figure 9 is used to generate a fifth redundant bit.

-~as . asV

'nn

Y10W

Figure 9 V.32 Convolutional Encoder (from
Ref. 8:p 2-4)

The 32 QAM constellation in Figure 10 is used for the five bit signal. A

look up table is used to determine the real and imaginary values for the

corresponding point on the constellation. As in the 16 QAM encoder and

18



the 2/3 rate code encoder, 201 encoded symbols and 55 zeros are loaded

into the IFFT array and the IFFT is performed.

B. GENERATING THE MFM SIGNAL

When all 256 bins have been loaded the program calls the routine to

perform the IFFT. The routine used to perform the IFFT was generated by

using the relationship x(n)=(FFT[X0(k)]J/N. The program to generate

the FFT was included with the Ariel DSP package1. In order to speed up

(IMAGINARY)

00.

1l~11 1 10

01000 00101 01010

I 100' 1 10100

00000 01111 010 01101 00011

4 11001 *2 11110 11010 2 11101 4

00111 01001 0 01011 0010

0 11 10001 10110

01110 00001 01100

11i 001 11011

270"

Figure 10 32 QAM Constellation
(from Ref. 8:p 2-3)

IUnless otherwise specified, all software (C) COPYRIGHT 1989 by Ariel
Corporation, Highland Park, NJ. All rights reserved. You may use the
software provided by Ariel Corporation on any one computer; copy the
object code into 2ny machine readable form for your use. You may modify
the software provided by Ariel and/or merge or incorporate it into any
general use software program of your development except for a program of
similar nature to the Ariel product. You may freely reproduce any such
program of your development; however the merged or incorporated part of
the Ariel provided software will continue to be subject to all other
provisions of this agreement.
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the routine as much as possible the values used in the look up table were

conjugated and scaled by 256 to save from doing them in the modulator. By

using the prescaled and conjugated values in the encoder constellations

the IFFT routines require no more time than the FFT routine used in the

decoder.

After computing the IFFT the real and complex values are stored in

memory. By utilizing a DSP board with dual D/A converters the real and

imaginary values can be clocked out at the sampling frequency fx" The

design of the system may be altered to either allow transmission of each

256 symbol packet or store the entire message and transmit at the end of

the message.

C. DECODERS

After using a quadrature receiver to recover the inphase and

quadrature components, the signals are sampled at the same frequency, fV,

as used in the encoder. These sampled values are used to determine the

transmitted symbols.

1. 16 QAM DECODER

At initialization the boundary data file BOIS16.D and the decoder

program QAM16DEC must be loaded onto the DSP board. To decode the 16 QAM

signal the constellation was partitioned as shown in Figure 11. The

magnitude of each received signal value is compared to the boundaries in

the first quadrant. Once a bounded area is found the actual values are

then used to determine the correct quadrant. The data file BOUN16.D is

indexed and the corresponding symbol is read out.
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Figure 11 PARTITIONED 16 QAM CONSTELLATION

2. 2/3 Rate Code Decoder

The use of a convolutional encoder requires the use of a soft decoder

such as a Viterbi Decoder to recover the transmitted symbol. The boundary

data file BOUN23.D and the Viterbi decoder program MFM23DEC are first

loaded into memory and run. After computing the FFT to recover the

transmitted symbols, a received point is read out of the array and the

quadrant of the constellation (Figure 8) that it lies in is found. The

data file BOUN23.D holds the four closest points, one in each state, to

the quadrant that the received point lies in. A boundary file is used to

help speed up the decoder routine, instead of computing the distance to

all points in the constellation only the point closest in each state is

used for computing the euclidean distance to the received point. Using the
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received point and the four values found in BOUN23.D the euclidean

distance to each point is Lomputed. The accumulated distance table is

updated with the distance to each state. The smallest accumulated

distance is found and the trellis is traced back 16 time periods to find

the most likely transmitted point. After finding the most likely point it

must be decoded. The bit Y2 is discarded and using the relation Y1=X16S1

the value of X1 is recovered by using past state information and X1:YI6S1.

The value of YO is output as XO. The values are stored in memory.

3. V.32 DECODER

The use of a convolutional encoder in the V.32 system requires that

a Viterbi Decoder must also be used to recover the transmitted symbol.

The boundary file BOUND.D and the program file MFMDECOD are first loaded

into memory. The constellation must first be partitioned in such a way

that the partition equally divides the distance between the four symbols

in the same state. The partition used for the state 110 is shown in

Figure 12. By using this method the partitions for all eight states may be

imposed or the constellation resulting in 52 separate partitions as shown

in Figure 13. For each partition there are eight points, one from each

state, that is closest to the boundary. These eight points for each of

the 52 boundaries are stored in the data file BOUND.D that is loaded into

the processor at initialization. Once a bounded area has been found, the

eight points are used to determine the euclidean distance from the

received point to the points read from BOUND.D. The distances calculated
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Figure 12 32 QAM Figure 13 Partitioned 32 QAM
Constellation (from Ref. 8: Constel!ation (from Ref. 8:p
p 3-7) 3-7)

are used to update the accumulated distance to each state. The state with

the smallest accumulated distance is found and the trellis is traced back

16 time periods to find the input state at the end of the most likely

path. The closest point in that state to the input point at that time

period is found and output. The most significant bit is masked off. The

differential encoding used on the two most significant bits must be

decoded by!

02a- (7D1n'Y-Tn. ) (DY22afl)Y2n ( 12 )

Once the two most significant bits have been decoded the symbol is output

to memory.

23



IV. SYSTEM OPERATION

The Digital Signal Processing boards used to run the programs that

were developed did not have dual D/A, A/D converters required to fully

implement an MFM system. The programs as listed, do not fully implement

a MFM system. There are no subroutines included for the clocking out of

samples through D/A converters in the encoders and no sampling routines in

the decoders. The encoding programs read in the data to be transmitted

from memory, encode the data and store the values created by the IFFT in

memory. The same locations are used to store all values generated, it is

assumed that the values will be clocked out once available freeing up

these locations for the next baud. The values would be clocked out through

the D/A converters to generate a signal. In the decoder programs, the

data is read out of locations were the sampled values would be stored.

The same locations are used for all sampled values, it is assumed each

baud will be decoded prior to receiving the next baud. If a convolutional

encoder is used, a decision must be made as to whether the next baud

should be delayed to allow decoding of the previous baud, or transmit the

baud when available and store the values in the decoder for off line

decoding.

Once the modulation technique is chosen the appropriate constellation

data files must be loaded for the look up tables used in the decoder.

These files are located in Appendices D, H, L. Once the appropriate data

files are loaded the encoder program and message file" are loaded into

memory and the encoder is run. The programs developed were run out of
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Ariel's BUG-56 monitor-debugger, they can also be adapted to run as

subroutines in a Microsoft C program. The monitor.-debugger allowed easy

access to all the chips registers and functions making running and

debugging the programs simpler.

To use the decoder the appropriate boundary values must be loaded.

Once the boundary values are loaded tthe decoder program is loaded and run.

The output is stored in memory.

All of the programs listed are written in assembly language for the

DSP 56001 and must be compiled into a loadable file using the Motorola

assembler. All of the data files are properly formatted to be read into

the correct memory locations. If the programs are run out of the BUG-56

monitor-debugger, a macro can be created to load all the files needed for

an encoder or decoder using one instruction.
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V. CONCLUSIONS

The time required for the encoder/decoder for a 256 sample baud is

shown in Table I. The Turbo Pascal routine used in past projects

Table I Sample Times for Programs Using 256
Sample Baud

TIME(ms)
PROGRAMS 20 Mhz 56001 27 Mhz 56001

4096 pt complex fft .023 sec .017 sec

256 pt complex fft 1 .7

MFM PROGRAMS (for 256 sample baud)

16 QAM Encoder 2.7 2.0

16 QAM Decoder 2.7 2.0

2/3 convolutional
encoder 3.2 2.4

2/3 rate code
Viterbi decoder 10.8 8.0

V.32 encoder
(w/o diff enc) 3.6 2.7

V.32 Viterbi decoder
(w/o diff enc) 15.8 11.7

V.32 encoder 3.7 2.8

V.32 Viterbi decoder 16.9 12.5
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required 22 seconds to perform a 4096 point complex FFT on an 8 Mhz AT

computer with a coprocessor.[Ref. 9:p 18] It is readily apparent that the

Digital Signal Processor has a tremendous performance advantage over

normal software routine. Using Matlab benchmarks a Sun Sparc station

required .34 seconds and a 20 Mhz 386 with a coprocessor required 1.16

seconds for a 4096 point complex FFT.

Multi-Frequency Modulation can be easily implemented on a Digital

Signal Processor Board. The programs for implementing the 16 QAM system

required the same amount of time to encode and to decode. There is little

penalty for using a trellis encoder but the Viterbi decoder takes over

three times longer than the encoder for the 2/3 rate code and almost four

times as long for the V.32 decoder.

The use of DSP boards in implementing MFM shows much improvement over

existing techniques. Suggestions for future research include running the

MFM programs on DSP boards with the required dual D/A, A/D converters. A

determination must be made as to whether the decoder should store the

entire message or delay transmission of a baud until the previous baud is

decoded. Another alternative is to use more than one processor, one to

encode/decode and another to clock out/sample the data.

The versatility and speed of Digital Signal Processors make them

ideally suited for use for a Multi-Frequency Modulated System. They offer

much greater performance than is currently available using software

routines and are can easily perform other functions by simply loading a

new program. The continuing development of more DSP compatible products

show that there will be greater uses of DSP technology in the future.
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APPENDIX A. FFT

; This program originally available on the Motorola DSP bulletin board.
; It is provided under a DISCLAIMER OF WARRANTY available from
; Motorola DSP Operation, 6501 Wm. Cannon Drive W., Austin, Tx., 78735.

Radix 2, In-Place, Decimation-In-Time FFT (fast).

Last Update 18 Aug 88 Version 1.0

fft macro points,data,odata,coef

fft ident 1,0

Radix 2 Decimation in Time In-Place Fast Fourier Transform Routine

Complex input and output data
Real data in X memory
Imaginary data in Y memory
Normally ordered input data
Normally ordered output data
Coefficient lookup table
-Cosine values in X memory
-Sine values in Y memory

Macro Call - fft points,data,odata,coef

points number of points (16-32768, power of 2)
data start of data buffer
odata start of output data buffer
coef starc of sine/cosine table

Alters Data ALU Registers
xl x0 yl yO
a2 al sO a
b2 bl bO b

Alters Address Registers
rO nO mo
rl n1 ml

n2

r4 n4 m4
r5 n5 m5
r6 n6 m6
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Alters Program Control Registers
PC sr

Uses 6 locations on System Stack

Latest Revision - 18 Aug-88

move #data,rO ;initialize input pointer
move #points/4,nO ;initialize input and output pointers offset
move nO,n4
move nO,n6 ;initialize coefficient offset
move l/points-l,mO ;initialize address modifiers
move mO,ml ;for modulo addressing
move mO,m4
move mO,m5

Do first and second Radix 2 FFT passes, combined as 14-point butterflies

move x:(rO)+nO,xO
tfr xO,a x:(rO)+nO,yl

do nO,_twopass
tfr yl,b x:(rO)+nO~yO
add yO,a x:(rO),xl ;ar+cr
add xl,b rO,r4 ;br+dr
add a,b (rO)+nO ;ar'=(ar+cr).(br~dr)
subl b,a b,x:(rO)+nO ;br'=(ar+cr)-(br~dr)
tfr xO,a 'xO y:(rO),b
sub yO,a y:(r14).n4,yO ;ar-cr
sub yO,b xO,x:(rO) ;bi-di
add a,b y:(rO)+nO,xO ;cr'=(ar-cr)+(bi-di)
subl b,a b,x:(rO) ;dr'=(ar-cr)-(bi-di)
tfr xO,a 'xO y:(r4),b
add yO,a y:(rO)+nO,yO ;bi+di
add yO,b xO,x:(rO)+nO ;ai+ci
add b,a y:(rO)+,xO ;ai'=(ai+ci)+(bi+di)
subl a,b a,y:(r4).n4 ;bi'=(ai+ci)-(bi+di)
tfr xO,a b,y:(r4)+n4
sub YO,a xl,b ;ai-ci
sub yl,b x:(rO)+nO,xO ;dr-br
add a,b x:(rO)+nO,yl ;ci'=(ai-ci)+(dr-br)
subi b,a b,y:(r4)+n4 ;di'=(ai-ci)-(dr-br)
tfr xO,ay:r)

.twopass

Perform all next FFT passes except last pass with triple nested DO loop

move #points/8,nl ;initialize butterflies per group
move #/4,n2 ;initialize groups per pass
move #-l,m2 ;linear addressing for r2
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move #0,m6 ;initialize C address modifier for
;reverse carry (bit-reversed) addressing

do #@cvi(@log(points)/@log(2)-2.5),_endpass ;example: 7 passes
for 1024 pt. FFT

move #data,rO ;initialize A input
pointer

move rO,rl
move nl,r2
move rO,r4 ;initialize A

output pointer
move (rl)+nl ;initialize B input

pointer
move rl,r5 ;initialize B

output pointer
move #coef,r6 ;initialize C input

pointer
lua (r2)+,nO ;initialize pointer

offsets
move nO,n4
move nO,n5
move (r2)- ;butterfly loop

count
move x:(rl),xl y:(r6),yO ;lookup -sine and

-cosine values
move x:(r6)+n6,xO y:(rO),b ;update C pointer,

preload data
mac xl,yO,b y:(rl)+,yl
macr -xO,yl,b y:(rO),a

do n2,_end.grp
do r2,_endbfy
subl b,a x:(rO),b ,y:(r4) ;Radix 2 DIT

butterfly kernel
mac -xl,xO,b x:(rO)+,a ,y:(r5)
macr -yl,yO,b x:(rl),xl
subl b,a b,x:(r4)+ y:(rO),b
mac xl,yO,b y:(rl)+,yl
macr -xO,yl,b a,x:(r5)+ y:(rO),a

end-bfy
move (rl)+nl
subl b,a x:(rO),b ,y:(r4)
mac -xl,xO,b x:(rO)+nO,a ,y:(r5)
macr -yl,yO,b x:(rl),xl y:(r6),yO
subl b,a b,x:(r4)+n4 y:(rO),b
mac xl,yO,b x:(r6)+n6,xO y:(rl)+,yl
macr -xO,yl,b a,x:(r5)4n5 y:(rO),a

_endgrp
move nl,bl
lsr b n2,al ;divide butterflies per group by two
Isl a bl,nl ;multiply groups per pass by two
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move aln2
_end_pass

Do last FFT pass

move #2,nO ;initialize pointer offsets
move nO,nl
move #points/4,n4 ;output pointer A offset
move n4,n5 ;output pointer B offset
move #data,rO ;initialize A input pointer
move #odata,r4 ;initialize A output pointer
move r4,r2 ;save A output pointer
lua (rO)+,rl ;initialize B input pointer
lua (r2)+n2,r5 ;initialize B output pointer
move #O,m4 ;bit-reversed addressing for output ptr. A
move m4,m5 ;bit-reversed addressing for output ptr. B
move #coef,r6 ;initialize C input pointer
move (r5)-n5 ;predecrement output pointer
move x:(rl),xl y:(r6),yO
move x:(r5),a y:(rO),b

do n2,_lastpass
mac xl,yO,b x:(r6)+n6,xO y:(rl)+nl,yl ;Radix 2 DIT butterfly

kernel
macr -xO,yl,b a,x:(r5)+n5 y:(rO),a ;with one butterfly per

group
subl b,a x:(rO),b b,y:(r4)
mac -xl,xO,b x:(rO)+nO,a a,y:(r5)
macr -yl,yO,b x:(rl),xl y:(r6),yO
subl b,a b,x:(r4)+n4 y:(rO),b

_lastpass
move a,x:(r5)+n5
endm
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APPENDIX B. IFFT

This program uses the same routine used in the program FFT. The IFFT is
calculated using the relationship IFFTf(FFT[X(k)]/N). It is assumed that

; the values used in the constellation are conjugated and prescaled by N.
If the values to be used are not conjugated a routine must be added to
the beginning of this routine to conjugate the values. The division by
N can also be accomplised by using left shifts, but will slow down the
program.

Radix 2, In-Place, Decimation-In-Time IFFT (fast).

ifft macro points,data,odata,coef
ifft ident 1,0

Radix 2 Decimation in Time In-Place Inverse Fast Fourier Transform
Routine

Complex input and output data
Real data in X memory
Conjugated and prescaled imaginary data in Y memory
Normally ordered input data
Normally ordered output data
Coefficient lookup table
-Cosine values in X memory
-Sine values in Y memory

Macro Call - ifft points,data,odata,coef

points number of points (16-32768, power of 2)
data start of data buffer
odata start of output data buffer
coef start of sine/cosine table

Alters Data ALU Registers
xl x0 yl yO
a2 al aO a
b2 bl bO b

Alters Address Registers
rO nO mO
rl nl ml

n2

r4 n4 m4
r5 n5 m5
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r6 n6 m6

Alters Program Control Registers
PC sr

Uses 6 locations on System Stack

Latest Revision - 18 Aug-88

move 1/data,rO ;initialize input pointer
move #points/4,nO ;initialize input and output pointers offset
move nO,n4
move nO,n6 ;initialize coefficient offset
move #points-l,mO ;initialize address modifiers
move mO,ml ;for modulo addressing
move mO,m4
move mO,m5

Do first and second Radix 2 IFFT passes, combined a-, 4-point butterflies

move x:(rO)+nO,xO
tfr xO,.3 x:(rO)4n0,yl

do nO,_twopass
tfr yl,b x:(rO).nO,yO
add yO,a x:(vO),xl ;ar+cr
add xl,b rO,r4 ;br+dr
acid a,b (rO)+nO ;arl=(ar+cr)+(br+dr)
subi, b,a b,x:(rO)+nO ;br'=(ar+cr)-(br~dr)
tfr xO,a a'xO y:(rO),b
sub yO,a y:(r4)4n4,yO ;ar-cr
sub yO,b xO,x:(rO) ;bi-di
add a,b y:(rO)+nO,xO ;cr'=(ar-cr)+(bi-di)
subl b,a b,x:(rO) ;drl=(ar-cr)-(bi-di)
tfr xO,a a,xO y:(r4),b
add yO,a y:(rO)+nO,yO ;bi+di
add yO,b xO,x:(rO)+nO ;ai~ci
add b,a y:(rO)+,xO ;ai'=(ai+ci)+(bi+di)
subl a,b a,y:(r4)*nI. ;bi'=(ai+ci)-(bi~di)
tfr xO,a b,y:(r4)+nk
bub yO,a xl,b :ai-ci
sub yl,b x:(rO)+nO,xO ;dr-br
add a,b x:(rO).nO,yl ;ci't(ai-ci).(dr-br)
subi b,a b,y:(r4)+n4 ;di'r(ai-ci)-(dr-br)
tfr xO,a a~y:(r4)+

-tvopass

Perform all next IFFT passes except last pass with triple nested DO loop
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move #points/8,nl ;initialize butterflies per group
move #4,n2 ;initialize groups per pass
move #-l,m2 ;linear addressing for r2
move #Om6 ;initialize C address modifier for

;reverse carry (bit-reversed) addressing

do #@cvi(@log(points)/@log(2)-2.5),_endpass ;example: 7 passes
for 1024 pt. IFFT

move #data,rO ;initialize A input
pointer

move rO,rl
move nl,r2
move rO,r4 ;initialize A output

pointer
move (rl)+nl ;initialize B input

pointer
move rl,r5 ;initialize B output

pointer
move #coef,r6 ;initialize C input

pointer
lua (r2)+,nO ;initialize pointer

offsets
move nO,n4
move nO,n5
move (r2)- ;butterfly loop count
move x:(rl),xl y:(r6),yO ;lookup -sine and -cosine

values
move x:(r6)+n6,xO y:(rO),b ;update C pointer, preload

data
mac xl,yO,b y:(rl)+,yl
macr -xO,yl,b y:(rO),a

do n2,_endgrp
do r2,_endbfy
subl b,a x:(rO),b b,y:(r4) ;Radix 2 DIT butterfly

kernel
mac -xl,xO,b x:(rO)+,a a,y:(r5)
macr -yl,yO,b x:(rl),xl
subl b,a b,x:(r4)+ y:(rO),b
mac xl,yO,b y:(rl)+,yl
macr -xO,yl,b a,x:(r5)÷ y:(rO),a

_end_bfy
move (rl)+nl
subl b,a x:(rO',b b,y:(r4)
mac -xl,xO,b x:(rO0+nO,a a,y:(r5)
macr -yl,yO,b x:(rl),xl y:(r6),yO
subl b,a b,x:(r4)+n4 y:(rO),b
mac xl,yO,b x:(r6)+n6,xO y:(rl)+,yl
macr -xO,yl,b a,x:(r5)+n5 y:(rO),a

_end grp
move nl,bl
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lsr b n2,al ;divide butterflies per group by two
isl a bl,nl ;multiply groups per pass by two
move al,n2

end_pass

Do last IFFT pass

move #2,nO ;initialize pointer offsets
move nO,nl
move #points/4,n4 ;output pointer A offset
move n4,n5 ;output pointer B offset
move #datarO ;initialize A inpu~t pointer
move #odata,r4 ;initialize A output pointer
move r4,r2 ;save A output pointer
lua (rO)+,rl ;initialize B input pointer
lua (r2)+n2,r5 ;initialize B output pointer
move #O,m4 ;bit-reversed addressing for output ptr. A
move m4,m5 ;bit-reversed addressing for output ptr. B
move #coef,r6 ;initialize C input pointer
move (r5)-n5 ;predecrement output pointer
move x:(rl),xl y:(r6),yO
move x:(r5),a y:(rO),b

do n2,_lastpass
mac xl,yO,b x:(r6)+n6,xO y:(rl)+nl,yl ;Radix 2 DIT butterfly

kernel
macr -xO,yl,b a,x:(r5)+n5 y:(rO),a ;with one butterfly per

group

subl b,a ;complete last butterfly
neg b ;and output conjugate
move b,y:(r4)
move x:(rO),b
neg a
move a,y:(r5)
mac -xl,xO,b x.(rO)+nO,a
macr -yl,yO,b x:(rl),xl y:(r6),yO
subl b,a b,x:(r4).n4 y:(rO),b

_lastpass
move a,x:(r5)+n5
endm

35



APPENDIX C. SINE COSINE GENERATOR

; This progr&m originally available on the Motorola DSP bulletin board.
; It is provided under a DISCLAIMER OF WARRANTY available from
; Motorola DSP Operation, 6501 Wm. Cannon Drive W., Austin, Tx., 78735.

Sine-Cosine Table Generator for FFTs.

; Last Update 25 Nov 86 Version 1.2

sincos macro pointscoef
sincos ident 1,2

sincos - macro to generate sine and cosine coefficient
lookup tables for Decimation in Time FFT
twiddle factors.

points - number of points (2 - 32768, power of 2)
coef - base address of sine/cosine table

negative cosine value in X memory
negative sine value in Y memory

; Latest revision - 25-Nov-86

pi equ 3.141592654
freq equ 2.0*pi/@cvf(points)

org x:coef
count set 0

dup points/2
dc -@cos(@cvf(count)*freq)

count set count4l
endm

org y:coef
count set 0

dup points/2
dc -@sin(@cvf(count)*freq)

count set count+l
endm

endm ;end of sincos macro
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APPENDIX D. 16 QAM DATA FILES

The following two data files are prescaled (full scale constellation
values divided by 256) and conjugated. Both data files must be loaded
into the DSP prior to running QAM16ENC. They are properly formatted to be
read into memory. They occupy the first 16 locations of x and y memory.

Data file '16QAMRE.DAT'

HX
00000000,O000000F
FFF800,FFE800,FFF800,FFE800
000800,000800,001800,001800
FFF800,FFF800,FFE8OO,FFE800
000800,001800,000800,001800

Data file '16QAMIM.DAT'

HY
00000000,O00000OF
000800,000800,001800,001800
000800,001800,000800,001800
FFF800,FFE800,FFF800,FFE800
FFF800,FFF800,FFE800,FFE800
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APPENDIX E. 16 QAN ENCODER

This program is an encoder for a 16 QAM system. A symbol consisting of
four bits is read into the engwder and using a look up table outputs the
values for the points on the constellation and are loaded into an array.
The data files 16QAMRE.DAT and 16QAMIM.DAT must be loaded prior to
running 16QAMEN. Once the 256 values are loaded into an array an IFFT
is performed to generate the MFM signal.

The following registers are modified:
r2
r3
r4
r5

The following Data ALU Registers are modified:
aO al a
xO xl yO
bO bl b

qaml6en

ident 1,1
page 132,54
opt nomd,nomex,loc

include 'sincos' ;include macro for sine cosine values
include 'ifft' ;include macro for calculating IFFT

Define memory locations to be used in the program

start equ $100 ;starting program location
startifft equ $350 ;starting program location for IFFT
input equ 40 ;starting location of input bits
output equ 50 ;starting location of output bits
coef equ 128 ;location of coefficients for IFFT
points equ 256 ;number of points for IFFT
data equ 768 ;location of input data for IFFT
odata equ 1280 ;location of output data for IFFT
locate equ $9C4 ;location of message to be sent (hex)

sincos points,coef
opt mex
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org p:start
move #locate,r3

begin
move #data,r4
do #201,cod
move #output,r5
jsr readbit
move r4,xO
move #data+100,a
cmp xOa ;check to see if 100 symbols have been read
jseq outzero ;output 55 zeros, read remaining symbols
jsr outbit

code
org p:startifft
ifft points,data,odata,coef ;macro call to perform IFFT
imp begin

nop
swi

The subroutine readbit reads the input value into memory one bit at a
time

readbit
move #input+3,r2
move y:(r3)+,a ;read input symbol
move #>$1,xO
do #4,loop ;symbol is read in one bit at a time
and xO,a a,xl
move al,x:(r2)-
move xl,a
asr a

loop
rts

The subroutine outbit outputs the values stored by readbit. This four
bit symbol is used as an index into a lookup table.

outbit
move #input,r2
clr b
clr a
addl b,a
do #4,loop2 ;symbol read out one bit at a time
move x:(r2)+,bO
addl b,a

loop2
move aO,r5 ;symbol is used to index into lookup table
nop
move x:(r5),xO ;get real constellation value
move y:(r5),yO ;get imaginary constellation value
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move xO,x:(r4) ;load real value into IFFT array
move yO,y:(r4)+ ;load imag value into IFFT array mp
rts

outzero
do #55,endzero ;subroutine loads zeros in center
move #O,xO ;55 locations of IFFT array to
move xO,x:(r4) ;allow for filtering
fop
move xO,y:(r4)+

endzero
fop
rts
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APPENDIX F. 16 QA14 BOUNDARY FILE

The following data file BOUN16.d contains the symbol data for each bounded
area used in the 16 QAM decoder. It must be loaded into the DSP prior to
running 16QAMDEC.

Data file 'BOUN16.D'

IX
00000200,0000020F
00000C,000008,000000,000004
00000D,OOOOOA,000001,000006
OOOOOE,000009,000002,000005
OOOOOF,OOOOOB,000003,000007
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APPENDIX G. 16 QAM DECODER

; This program is a decoder for 16 QAM system. After computing the FFT
; of the received data the points are read out of the array one at a time
; and compared with boundaries on the constellation to determine the
; received point. The decoded symbols are then stored in memory. It is
; assumed that the sampled input data is loaded into the input data
; location (1280) of the FFT. If the sampled data is stored elsewhere a
; routine to load the FFT array will need to be added.

The following registers are modified:

;rO r4
; rl r5

r2 r6

The following Data ALU registers are modified:

;a b
;xO xl
;yO yl

qaml6dec

ident 1,1
page 132,66,3,3,0
opt nomd,nomex,loc,nocex,mu,cex

include 'sincos' ;include macro for sine cosine values
include 'fft' ;include macro for calculating FFT

org 1:$0000

location dsm 16 ;storage locations for look up table
input dam 16 ;storage locations for input data

endlong equ *
org x:endlong

storr6 ds 1
org x:512

boundaryl ds 4 ;reserves four locations for boundary pts.
boundary2 ds 4 ;reserves four locations for boundary pts.
boundary3 ds 4 ;reserves four locations for boundary pts.
boundary4 ds 4 ;reserves four locations for boundary pts.

startfft equ $100 ;starting location for fft program
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start equ $250 ;starting location for decoder program
points equ 256 ;number of points for FFT
coef equ 1024 ;location of coefficients for FFT
data equ 1280 ;location of input data for FFT
odata equ 1536 ;location of output data for FFT

;Full scale values for 16 QAM constellation.

four equ $200000
three equ $180000
two equ $100000
one equ $080000
zero equ $000000
mone equ $F80000
mtwo equ $F00000
mthree equ $e80000
mfour equ $eOOOOO

sincos points,coef
opt mex

org p:startfft
fft pointsdata,odata,coef ;Macro call for FFT

opt cex
org p:start
jsr initialize
do #201,_endrun
jsr readdata
jsr findbound

endrun
nop
swi

;This initialization routine initializes register and modifiers
;as well as clearing the memeory.
;The constellation is also loaded into memory here.

initialize
move #$ffff,mO ;reset register to linear addressing
move #$ffff,ml ;reset register to linear addressing
move #$ffff,m2 ;reset register to linear addressing
move #$ffff,m4 ;reset register to linear addressing
move #$ffff,m5 ;reset register to linear addressing
move #15,m6 ;set register for modulo 15 addressing
move #0,rl
cir b #$0,rO
clr a rOr5
do #50,clrmem
move a,x:(rO)+ b,y:(rS)+ ;clear first 50 memory locations

clrmem

43



move #input,bl
move bl,x:storr6

;Now load full scale values of the constellation in the table locations.

move #location,rO ;Real Imag
move rO,r4
move #mone,a
move #mone,b
move a,x:(rO)+ b,y:(r4)+ ;-l -1
move #mthree,b
move b,x:(rO)+ a,y:(r4)+ ;-3 -1
move a,x:(rO)+ b,y:(r4)+ ;-1 -3
move #mthree,a
move a,x:(rO)+ b,y:(r4)+ ;-3 -3
move #mone,b
move #one,a
move a,x:(rO)÷ b,y:(r4)+ ; 1 -1
move #mthree,b
move a,x:(rO)+ b,y:(r4)+ ; 1 -3
move #three,b
move #mone,a
move b,x:(rO)+ a,y:(r4)+ ; 3 -1
move #mthree,a
move b,x:(rO)+ a,y:(r4)+ ; 3 -3
move #mthree,a
move #three,b
move #mone,xO
move #one,yl
move xO,x:(rO)÷ yl,y:(r4)+ ;-1 1
move xO,x:(rO)+ b,y:(r4)+ ;-1 3
move a,x:(rO)+ yi,y:(r4)+ ;-3 1
move a,x:(rO)+ b,y:(r4)+ ;-3 3
move #one,a
move #one,xO
move #three,yl
move xO,x:(rO)+ a,y:(r4)+ ; 1 1
move bx:(rO)+ a,y:(r4)+ ; 3 1
move xO,x:(rO)+ yl,y:(r4)÷ ; 1 3
move b,x:(rO)+ yl,y:(r4)+ ; 3 3
move #odata,xO
move #$eff,yO
move xO,y:$424 ;store location for input to decoder
move yO,y:$425 ;store location for output of decoder
rts

; The subroutine readdata reads in the data from the output of the FFT.
; The values are read out one point at a time. The values are compared to
; boundaries on a partioned constellation to determine the received point.
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readdata
move y:$424,rO
hop
move rO,yO
move #odata+l00,a ;check to see if first 100 values have been

read
cmp yO,a
jseq _delzero ;delete 55 zeros
move x:storr6,r6
move x:(rO),a ;input data is loaded into storage location
move y:(rO)+,b ;for decoding
move a,x:(r6)
move b,y:(r6)+
move r6,x:storr6
move rO,y:$424
rts

;subroutine _delzero removes the zeros installed in the encoder

_delzero
move #odata+155,rO
hop
rts

The subroutine findbound compares the value that has been read out of
the array to the boundries on the constellation to decode the point.
First the magnitude alone is used to find the correct bounded area then
the signed values are used to determine the correct quadrant is used to
increment the boundary pointer to find the correct point.

findbound

move x:-(r6),a ; real value is stored in a
move #boundaryl,r2 ; load starting position for bounded values
move #two,yo
cmpm yO,a y:(r6),b ; compare mag of real value to two

; imaginary value is stored in b
jgt bigtwo ; x>2
cmpm yO,b x:(r2),xO ; compare mag of imag value to two
jit continue ; x<2,y<2, load r2 with boundary 1 and

; continue
move #four,xl
cmpm xl,b #boundary3,r2 ; compare magnitude of imag value
hop
move x:(r2),xO
imp continue ;x<2,y>2 and y<4, load r2 with boundary4

bigtwo
cmpm yO,b #boundary2,r2 ;x>2 y<2
nop
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move x:(r2),xO
jlt continue ;x>2 and x<I, y<2 load boundary2 and

continue
cmpm xl,b #boundary4,r2
nop
move x:(r2),xO
imp continue ;x>2,y<4 load boundary 4 and continue

; This part of the routine finds the correct quadrant and updates the
; pointer to the correct point.

continue
clr a x:(r6),xl
cmp xl,a y:(r6),yl
jgt negx
cmp yl,a #3,n2
jgt posxnegy

posxposy
imp outputdata ;output is in first quadrant

posxnegy
move x:(r2)+n2,xO ;update r2 by 3, fourth quadrant
imp outputdata

negx
cmp yl,a #l,n2
jgt negxnegy

negxposy
move x:(r2)+n2,xO ;update r2 by I, second quadrant
imp outputdata

negxnegy
move #2,n2
nop
move x:(r2)+n2,xO ;update r2 by 2, third quadrant

outputdata
move y:$425,rO
move x:(r2),a
nop
move al,y:(rO)+ ;move decoded symbol to output location
move rO,y:$425
rts
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APPENDIX H. 2/3 RATE CODE DATA FILES

The following two data files are prescaled (full scale constellation
values divided by 256) and conjugated. Both data files must be loaded
into the DSP prior to running 23ENCOD. They are in the proper format to
be loaded into memory.

Data file '23REAL.DAT'

HX
00000000,00000007
001000,FFF000,000800,FFF800
FFF800,000800,FFFO0O,001000

Data file '23IMAG.DAT'

HY
00000000,00000007
FFF800,000800,FFF000,001000
FFF00,001000,FFF800,000800
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APPENDIX I. 2/3 RATE CODE ENCODER

; This program is an encoder for a 2/3 rate convolutional code. A symbol
; consisting of two bits is read into the encoder, combinational
; logic is used to generate the third bit then a look up table is used
; to output the values from a point on the constellation. The data files
; 23REAL.DAT and 231MAG.DAT must first be loaded in memory prior to
; 23ENCOD. The 256 values are loaded into an array and an IFFT is
; performed to generate the MFM signal.

The following registers are modified;
rO r3
rl r4
r2 r5

The following Data ALU registers are modified;
a aO al
b bO
xO xl

;yO yl

23encod
ident 1,1

page 132,54
opt nomd,nomex,loc

include 'sincos'
include 'ifft'

start equ $100 ;starting program location
startifft equ $350 ;starting program location for IFFT
points equ 256 ;number of points for IFFT
coef equ 128 ;location of coefficients for IFFT
data equ 768 ;location of input data for IFFT
odata equ 1280 ;location of output data for IFFT
locate equ $9C4 ;starting location for message to be sent
input equ 40 ;storage locations for input bits
output equ 50 ;storage locations for encoded bits
stateme&.z equ 60 ;storage for past bits

sincos points,coef
opt mex

org p:start
move #locate,r3
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begin
move #data,r4

do #201,code
move #output,r5
jsr readbit
jsr encode
move r4,xO
move #data+100,a
cmp xOa ;check to see if 100 symbols have been read
jseq outzero ;output 55 zeros, read remaining symbols
jsr outbit

code
org p:startifft
ifft points,data,odata,coef;macro call to perform IFFT
jmp begin

nop
swi

; The subroutine readbit reads two bits from the message and stores them
; in memory.

readbit
move #input+1,r2
move y:(r3)+,a
move #>$I,xO
do #2,loop
and xO,a a,xl
move al,x:(r2)-
move xl,a
asr a

loop
rts

The subroutine encode performs the convolutional encoding to generate
a redundant bit.

encode
move #input,rO
move #output,r5
move #statemem,rl
move x:(rO)+,xO ;read bit xO
move x:(rO)-,xl ;read bit xl
move x:(rl)+,a ;read past bit sl
move x:(rl)-,b ;read past bit s2
eor xla ;xl ecr sl
move a,yl
eor yl,b ;xl eor sl eor s2 = y2
move xO,y:(r5) ;store xO
move x:(rl)4,a ;read past bit sl
move x:(rl)-,xO ;read past bit s2
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eor xl,a ;xl eor sl - yl
move xO,x:(rl)+ ;move s2 to sl
move xl,x:(rl) ;move xl to sl
move a,x:(rO)+ ;temp store yl
move b,x:(rO) ;temp store y2
rts

The subroutine outbit reads the three bits out of memory to form a
symbol. The symbols are reconstructed by reading the bits one at a
time added to to an empty register and shifted left until three bit

; symbol is formedA lookup table is used to get the values for the point
cn the constellation.

outbit move #input,r2
clr b
clr a y:(r5),bO
addl b,a
do #2,loop2
move x:(r2)+,bO
addl b,a

loop2
move aO,r5 ;move symbol to r5
nop

;use value in r5 to get points off the constellation

move x:(r5),xO
move y:(rS),yO

;move constellation points to IFFT array

move xO,x:(r4)
move yO,y:(r4)+
nop
rts

;subroutine outzero puts 55 zeros in IFFT array for filtering

outzero
do #55,endzero
move #O,xO
move xO,x:(r4)
nop
move xO,y:(r4)+

endzero
nop
rts
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APPENDIX J. 2/3 RATE CODE BOUNDARY FILE

The following data file BOUN23.D contains the points on the constellation
used to find the minimum distances to states after the proper quadrant is
found.

Data file 'BOUN23.D

HX
00000200,0000020F
000040,000042,000044,000047
000041,000042,000044,000046
000041,000043,000045,000046
000040,000043,000045,000047
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APPENDIX K. 2/3 RATE CODE VITERBI DECODER

; This program is a Viterbi Decoder for a 2/3 rate convolutional encoder.
; There is a 16 time period delay which will approach the maximum possible
; gain for this type of encoder. There are 64 locations needed in memory
; (16 past time periods x 4 states a 64).

The following registers are modified:
rO r5
rl r6
r2 r7
r4

The following Data ALU registers are modified:
a b xO yO
al bl xl yl

The following register modifiers are used;
ml nO
m5 n2
m6

mfm23dec
ident 1,1
page 132,66,3,3,0
opt nomd,nomex,loc,nocex,mu,cex

include 'sincos'
include 'fft'

org 1:$0000

period dsm 64 ;64 storage locations
location dsm 8 ;constellation points
input dsm 16 ;past 16 input bits
tables dsm 4 ;accumlated distance
temp dam 4 ;temp storage for distance table

endlong equ *
org x:endlong

storr6 ds 1
ynow dsm 3 ;input bits

org y:endlong
ypast dsm 2 ;past bits

org x:512
boundaryl ds 16 ;storage for boundary data
startfft equ $100 ;starting location for FFT
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fA

points equ 256 ;number of points for FFT
coef equ 1024 ;location of coefficients for FFT
data equ 1280 ;location of sampled data for FFT
odata equ 1536 ;output location for FFT
start equ $250 ;starting location for decoder program

; Define full scale constellation values.

two equ $100000
one equ $080000
zero equ $000000
mone equ $F80000
mtwo equ $FO0000

large equ .9
small equ .1
offset equ $000000 ;can be used to distort data

sincos points,coef
opt mex

org p:startfft
fft points,data,odata,coef
opt cex
org p:start
jsr initialize
do #201,_endrun
jsr readdata
jsr findmindist
jsr accumdist
jsr traceback
jsr outputdata

_endrun
nop
swi

;this initialization routine initializes register and modifiers
;as well as clearing the memeory. The constellation is also loaded
;into memory here. The accumulated distance array is set so that
;state zero starts out at a value of zero and all others start out
;larger, forcing the paths to merge at the zero states.

initialize
move #$ffffmO ;sets linear addressing
move #63,ml ;sets modulo 63 addressing
move #$ffff,m2 ;sets linear addressing
move #$ffff,m4 ;sets linear addressing
move #63,m5 ;sets modulo 63 addressing
move #15,m6 ;sets modulo 16 addressing
move #O,rl
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clr b #$O,rO
clr a rO, r5
do #256,clrmem
move a,x:(rO)+ b,y:(r5)+

cirmem
move Otables+1,r7
move 0$400000,al
rep 0/3
move al,x:(r7)+

move Oinput,bl
move bl,x:storr6

move Oodata-16,rO
move rO,r2
move #O,XO
move #O,yO
do 016,_clrreg
move xO,x:(rO)+
move yO,y:(r2)+

..clrreg

;Now load full scale values of the constellation in the table locations.

move #location,rO ;Real Imag
move rO,r4
move #two,a
move #one,yl
move #mtwo,b
move #monP,yO
move #one,xl
move #mone,xO
move a,x:(rO)+ yl,y:(r4)+ ;2 1
move xl,x:(rO)+ a,y:(r4). ;-2 -1
move xO,x:(rO)+ a,y:(r4). ; 1 2
move b,x:(rO)+ yl,y:(r4)+ ;-1 -2
move b,x:(rO)+ yO,y:(r4). ;-l 2
move xl,x:(rO). b,y:(r4). ; 1 -2
move xO,x:(rO)4 b,y:(r4). ; 1 -2
move a,x:(rO)+ yO,y:(r4)+ ;2 -1
move #odata,xO
move #Seff,yO
move xO,y:$Li24
move yO,y:$425
rts

;readdata reads in the data from the outpu of the FFT. The data is read
;in as complex points on the constellation.
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readdata
move y:$424,rO
nop
move rO,yO
move #odata+100,a
cmp yO,a
Jseq _delzero
move x:stor.6,r6
move #>offset,xO
move x:(rO),a
add xOa y:(rO)+,b
add xO,b a,x:(r6)
move b,y:(r6)+
move r6,x:storr6
move rO,y:$424
rts

_delzero
move #odata+155,rO
nop
rts

; the minimum distance is found to the closest point in every state and
; stored. The values are stored so that indexing is made easier, state
; 0,2,3,1. This will greatly reduce the number of cycles needed later.
; a smoothing function is used to accumulate distances in the accumulated
; table so this minimum distance is multiplied by .1.

; The subroutine findmindist finds the quadrant of the received point
; which is used as a pointer into the boundary table to read the four
; closest points, one in each state.

findmindist
move #boundaryl,r2
clr a x:-(r6),xl
cmp xl,a y:(r6),yl
jgt negx ;x<O
cmp yl,a #12,n2
jgt posxnegy

posxposy
imp findist

posxnegy
move x:(r2)+n2,xO
imp findist

negx
cmp yl,a #4,n2
jgt negxnegy

negxposy
move x:(r2)+n2,xO
imp findist
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negxnegy
move #8,n2
nop
move x:(r2)+n2,xO

; findist finds the distance from the received point to the points read
; from the boundary table.

findist
move x:(r2)+,rO
move #tables,r4
move x:(rO),a
sub xl,a y:(rO),b
sub yl,b a,xO
mpy xO,xO,a b,yO
mac yO,yO,a x:(r2)+,rO
move #small,xO a,yO
mpy xO,yO,a
move x:(rO),a a,y:(r4)+
sub xl,a y:(rO),b
sub yl,b a,xO y:(r4),,yO
mpy xO,xO,a b,yO
mac yO,yO,a x:(r2)+,rO
move #small,xO a,yO
mpy xO,yO,a
move x:(rO),a a,y:(r4)+
sub xl,a y:(rO),b
sub yl,b axO
mpy xO,xO,a b,yO
mac yO,yO,a x:(r2)+,rO
move #small,xO a,yO
mpy xO,yO,a
move x:(rO),a a,y:(r4)-
sub xl,a y:(rO),b
sub yl,b axOy:(r4)-,yO
mpy xO,xO,a b,yO
mac yO,yO,a x:(r2)+,rO
move #small,xO a,yO
mpy xO,yO,a
move a,y:(r4)
rts

;the accumulted distance routine adds the smallest distance from the
;previously computed table for all pathes going into a state and
;does this for all four states. Since only certain transitions are
;allowed the calculations are done in a specific order to reduce delay.

accumdist
clr a #tables,rO
move #$7fffff,al
move rO,r4
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move #temp,r2
move l/1,MO
move mO,m4
move #j1,nl
move nl,n5
move rl,rS

;find minimum distance to state zero
do #2,statezero
move x:(rO),xO y(4,
add xO,b
cmp b,a
tge b,a rO,r3
tge b,a r4,r7
move x:(rO)+,xO y:(r4)+,b

statezero
move r3,x:(rl).nl
move a,x:(r2)+ :r),
clr a r7,y:(rS)+n5
move #$7fffff,al

;find minimum distance to state two
do #2,statetwo
move x:(rO),xO y(4,
add xO,b
cmp b,a
tge b,a rO,r3
tge b,a r4,r7
move x:(rO)+,xO y:(r4)+,b

statetwo
move r3,x:(rl)+nl
move a,x:(r2)+ y:(r4)+,b
clr a r7,y:(r5)+n5

move #tables+2,r4
move r4,rO
move x:(rl)-nl,a
clr a x:(rl)-,b
move #$7fffff,al
move rl,r5

;find minimum distance to state one
do #2,stateone
move x:(rO),xO y:(r4),b
add xO,b
cmp b,a
tge b,a rO,r3
tge b,a rle,r7
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move x:(rO)+,xO y:(r14)-,b
stateone

move r3,x:(rl)+nl
move a,x:(r2)+
clr 8 r7,y:(r5).n5
move #$7fffff,al

;find minimum distance to state three
do #2,statethree
move x:(rO),xO y(4,
add xO,b
cmp b,a
tge b,a rO~r3
tge b~a r4,r7
move x:(rO).,xQ y:(r4)-,b

statethree
move r3,x:(ri).nl
move a,x:(r2)+
dlr a r7,y:(r5)+n5
move 1/$7fffff,al
move (r4)+

;now move new accumulated distances into the accumulated distance
;table from the temporary table
;also find the min distance state and store in r4 which is no longer used

move #$ffff,MO
move #$ffff,m4
move #temp,r3
move #tables,rO
move #large,xl
move #2,nO
do #3,endtable
move x:(r3)+,xO
mpy xl,xO,a
cmp a,b a,x:(rO)+nO
tge a,b rO,r4

endtable

move #/tables+l,rO
do #4,endtablex
move x:(r3).,xO
MPY xl~xO,a
cmp a,b a,x:(rO)+nO
tge a,b r01.r4

endtablex

;store in rO instead of r4

move r4,,rO

move 114,nl
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move (rO)-nO
rts

;the traceback routine now goes back through every time period starting
;with the current time period and finds the state from which the path
;came from one time period previous. At the end of this search, the
;last state found will also point to the path at that state, which is the
;output of the trellis.

traceback

;find the displacement from the pointer to table and store value in n4

move #tables,nO
move (rl)-nl
lua (rO)-nO,n5
move rl,r5
do #15,endtrace
move (rl)-nl
move x:(r5+n5),rO
move rl,r5
lua (rO)-nO,n5

endtrace
move #location,rO
move y:(r5+n5),a
rts

;the output data routine unscrambles the path order and finds one
;of the two points on the constellation coresponding to the output state
;which is closest to the original input at that time period.

outputdata
move a,b
move #>$bl,xO
cmp xO,a #>$b2,yO
teq yO,b
cmp yO,a #>$b3,xO
teq xO,b
cmp xO,a #>$bl,yO
teq yO,b
move #>$b5,xO
cmp xO,a #>$b7,yO
teq yO,b
cmp yO,a
teq xO,b
move b,r2
move #tables,n2
move x:storr6,r6
lua (r2)-n2,n3
move n3,a
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asi a
asi a
move a,nO
move r6,r3
lua (rO)+nO,rI4
move #>$7fffff,xl
move r4,rO
do #I4,endouit
move m;(r3),a y:(r6),b
move x:(rC)+,xO y:(r4)+,yO
sub xO,a
sub yO,b a,xO
mpy XO,XO,a b,yO
Mac yO,yO,a
tfr a,b xl,a
emp xl,b
tit b~a rO,r7
move a,xl

endout
clr a (r7)-
move #location,nO
move r7,rO
move #$f,al
lua (rO)-~nO,r"7
move r7,xO
and xO,a
jsr convoldec

move y:S425,rO
flop
move aO,y:(rO)+
move rO,y:$425
rts

;The subroutine convoldec decodes the received symbol by using
;combinational logic.

convoldec
move #ynow+2,rO
move gf>$l,xo
move #ypast,r7
do 03,loop
and xO,a a,xl
move al,x:(rO)-
move xl,a
asr a

loop

move x:(rO)+,a y:(r7).,yO ;read si
move x:(rO).,b y:(r7)-,yl ;read yO and s2
move x:(rO)-,a ;read yl
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flop
eor yO,a ;yl eor si =xl
move yi,y:(r7)+ ;update past states
move a,y:(r7)-
move b,x:(rO)-
move a,x:(rO)+
clr a
clr b
do #2,loop2

move x:(rO)-,bO ;ý,utput decoded bits
addi b~a

loop2
rts
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APPENDIX L. V.32 DATA FILES

The following data files are prescaled (full scale constellation values
divided by 256) and conjugated. Both data files must be loaded into the
DSP prior to running MFMENG. They are properly formatted to be read into
memory.

Data file 'QAIIREAL.DAT'

HX
00000000, 000000 iF
FF3000,0000000 000000,002000
002000,000000,000000, FFEOOO
FFFOOO,FFFOOO ,001000 ,001000
001000,001000 ,FFFOOO ,FFFOOO
FFE800,000800,FFE800,000800
001800, FFF800 ,001800, FFF800
000800 ,FFE800 ,000800 ,000800
FFF800,001800, FFF800, FFF800

Data file 'QAMIMAG.DAT'

HY
00000000,0000001lF
FFF800 ,001800 ,FFF800,FFF800
000800 ,FFE800 ,000800 ,000800
FFE800,000800,FFE800,000800
001800, FFF800 ,001800, FFF800
001000,001000 ,f FF000 ,FFFOOO
FFFOOO ,FFFO3OO2001000,001000
FFEOOO ,000000, 000000,002000
002000,000000, OOCOOO ,FFEOOO
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APPENDIX M. V.32 ENCODER

; This is a an encoder for V.32 standard with differential encoding.
; The encoder can also be used with the differential removed by commenting
; out the call to diff.

mfmencod
ident 1,1

page 132,54
opt nomd,nomex,loc

include 'sincos'
include 'ifft'

org x:$40
statemem ds 3 ;set 3 locations for pist states
input ds 4 ;set up 4 locations for input bits

org y:$ 4 0
ylpast ds 2 ;set up two locations for diff encoder
output ds 1 ;output of convolutional encoder

start equ $100 ;starting location for encoder
startifft equ $350 ;starting location for IFFT
points equ 256 ;number of points for IFFT
odata equ 1280 ;output of IFFT
data equ 768 ;input data for IFFT
coef equ 128 ;location for coeficients for IFFT
locate equ $9C4 ;starting location for message

sincos points,coef
opt mex

org p:start
move #ylpast,r5
move #statemem,r3
move #locate,r6

begin
move #data,r7
do #201,code ;reads 201 message symbols
move #output,r4
jsr readbit
jsr diff
jsr encode
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move r7,xO
move #data+lOO,a
cmp xO,a ;checks if first 100 symbols read
jseq outzero ;outputs 55 zeros
jsr outbit

code
org p:startifft
ifft points,data,odata,coef
imp begin

nop
swi

;subroutine readbit reads in the four bit symbol one bit at a time

readbit
move #input+3,r2
move y:(r6)+,a
move #>$1,xO
do #4,loop
and xO,a a,xl
move al,x:(r2)-
move xl,a
asr a

loop
rts

;subroutine diff differentially encodes the two most significant bits

diff
move #input,rl
move y:(r5)+,yO
move x:(rl)+,a y:(r5)-,yl
move x:(rl)-,b
eor yO,a a,xO
eor yl,b a,xl
move xO,a
and yO,a b,yl
eor yl,a xl,b
move b,x:(rl)+ b,y:(r5)+
move a,x:(rl) a,y:(r5)-
rts

;subroutine encode convolutionally encoda. ýhe four bits to generate a
;fifth bit

encode
move #input,rO
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move #output,r4
move #statemem,rl
move x:(rO)+,xl
move x:(rl)+,a
move a,y:(r4)
and xl,a x:(rO),xO

move x:(rl)-,b
eor xO,b a,yO
eor yO,b b,yl
move b,x:(rl)+ y:(r4),b
and yl,b xO,a
move (rl)+
eor xlta x:(rl),xO
eor xO,a y:(r4),yl
move b,yO
eor yO,a yl,x:(rl)-
move a,x:(rl)+
rts

;subroutine outbit reads the five bit symbol and uses it to index into the
;lookup table to get the values of the point on the constellation

outbit move #input,r2
clr b
clr a y:(r4),bO
addl b,a
do #4,loop2
move x:(r2)÷,bO
addl b,a

loop2
move aO,r4
fop
move x:(r4),xO

move y:(r4),yO

;move the values read from the constellation to the input array for the
;IFFT

move xO,x:(r7)
move yO,y:(r7)+

nop
rts

;subroutine outzero loads 55 zeros into the IFFT array for filtering

outzero
do #55,endzero
move #O,xO

move xO,x:(r7)
nop
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move xO,y:(r7)+
endiero

flop
rts
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APPENDIX N. V.32 BOUNDARY FILE

This data file BOUND.D contains the eight closest points (one in each
state) to each of the 52 bounded areas used in the partitioned
constellation. it must be loaded prior to using MFMDIFDE.

Data file 'BOUND.D'

HX
00000200, 0000039F
000082,000086, 00008B, 00008D*
000093,000095, 00009A, 00009E
000082,000086,000089, 00008F
000093,000095, 00009A, 00009E
000082,000086,000089,0000O8F
000091 ,000097,00009A, 00009E
000082,000086, 00008B, 00008D
000091,000097, 00009A, 00009E
000082,000086, 00008B, 00008D
000093,000094, 00009A, 00009D
000082, 000086 ,000089 ,00008F
000092,000095,000099, 00009E
000082,000086,000089, 0000SF
000090,000097,000099, 00009E
000082,000086, 00008B, 00008D
000091,000096, 00009A, 00009D
000083,000084, 00008B, 00008D
000093,000094, 00009A, 00009D
000080, 000087 ,000089, 0000SF
000092,000095,000099, 00009E
000080, 000087 ,000089, 0000SF
000090,000097,000099, 00009E
000083,000084, 00008B, OOOOSD
000091,000096, 00009A, 00009D
000082,000085, 00008A, 00008D
000093,000095, 00009A, 00009E
00008 2,000085,000088, 00008F
000093,000095, 00009A, 00009E
000081,000086,000089, 00008E
000091,000097, 00009A, 00009E
000081,000086, 00008B, 00008C
000091,000097, 00009A, 00009E
000082,000085, 00008A, 00008D
000093,000094 ,00009A,00009D
000082,000085,000088, 00008F
000092,000095,000099, 00009E
000081, 000086, 000089, 00008E
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000090,000097, 000099, 00009E
000081 ,000086,00008B,00008C
000091 ,000096,00009A,00009D
000082,000085 ,00008A,00008D
000093,000095,000098, 00009F
000082 ,000085, 000088, 00008F
000093,000095,000098, 00009F
000081 ,000086,000089, 00008E
000091 ,000097,00009B,00009C
000081 ,000086,00008B,00008C
000091,000097, 00009B, 00009C
000083,000084 ,00008A,00008D
000093,000094, 00009A, 00009D
000080,000087,000088, 0000SF
000092 ,000095 ,000099 ,00009E
000080,000087,000089, 00008E
000090 ,000097 ,000099 ,00009E
000083,000084 ,00008B,00008C
000091,000096 ,00009A, 00009D
000082,000085, 00008A, 00008D
000093 ,000094,000098, 00009F
000082,000085,000088, 00008F
000092,000095,000098, 00009F
000081 ,000086,000089,00008E
000090,000097 ,00009B,00009C
000081 ,000086,00008B,00008C
000091 ,000096,00009B,00009C
000083,000085, 00008A, 00008D
000093,000094 ,000098,00009D
000080, 000085 ,000088 ,00008F
000092, 000095 ,000099, 00009F
000081 ,000087,000089,00008E
000090,000097,000099, 00009C
000081,000084 ,00008B,00008C
000091,000096 ,00009B, 00009D
000082,000085, 00008A, 00008D
000093 ,000094 ,000098 ,00009D
000082,000085,000088, 00008F
000092, 000095 ,000099 ,00009F
000081,000086,000089, 00008E
000090,000097,000099, 00009C
000081,000086 ,00008B, 00008C
000091 ,000096,00009B,00009D
000083,000085, 00008A, 00008D
000093,000094, 00009A, 00009D
000080,000085,000088, 0000SF
000092,000095,000099 ,00009E
000081,000087 ,000089,00008E
000090,000097,000099, 00009E
000081 ,000084,00008B,00008C
000091 ,000096,00009A,00009D
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000083,000084,00008A,00008D
000093,000094,000098, 00009D
000080,000087,000088, 00008F
000092,000.095,000099, 00009F
000080,000087,000089, 00008E
000090,000097, 000099, 00009C
000083,000084,00008B ,00008C
000091,000096, 00009B ,00009D
000083,000085 ,00008A,00008D
000093,000094,000098, 00009F
000080,000085 ,000088 ,00008F
000092,000095,000098, 00009F
000081,000087,000089, 00008E
000090,000097,00009B ,00009C
000081,000084,00008B, 00008C
000091,000096,00009B ,00009C
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APPENDIX 0. V.32 VITERBI DECODER

;This program is a Viterbi Decoder for V.32. There is a 16
;time period delay which will approach the maximum possible
;gain for this type of encoder. If the differential encoder
;was not used in the encoder than the call to diff must be
;commented out.

;There are 128 memory locations allocated for path memory (8 states x 16
;time periods =128 locations). The full scale constellation values are
;loaded into memory during the intialization routine.

mfmdecod
ident 1,1
page 132,66,3,3,0
opt nomd,nomex,loc,nocexmu,cex

include 'sincos'
include 'fft'

org 1:$0000

period dsm 128 ;128 locations for path memory
location dsm 32 ;32 locations for constellation points
input dsm 16 ;16 locations for input points
tables dsm 8 ;8 locations for acumulated distance table
temp dsm 8 ;8 temp locations for distances
endlong equ *

org x:endlong
storr6 ds 1
ynow ds 4 ;4 locations for input bits

org y:endlong
ypast ds 2 ;2 past bits for differential decoder

;13 boundary tables with 8 points in each of the 4 quadrants

org x:512
boundryl ds 32
boundry2 ds 32
boundry3 ds 32
boundry4 ds 32
boundry5 ds 32
boundry6 ds 32
boundry7 ds 32
boundry8 ds 32
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boundry9 ds 32
boundrylO ds 32
boundryl1 ds 32
boundryl2 ds 32
boundry13 ds 32

startfft equ $100 ;starting location for FFT routine
points equ 256 ;number of points for FFT
coef equ 1024 ;location of FFT coefficients
data equ 1280 ;location of sampled data
odata equ 1536 ;output data from FFT
start equ $250 ;starting location of decoder

;Load in full scale constellation values

four equ $200000
three equ $180000
two equ $100000
one equ $080000
zero equ $000000
mone equ $F80000
mtwo equ SF00000
mthree -equ $e80000
mfour equ $eOOOOO

large equ .9
small equ .1
offset equ $000000

sincos points,coef
opt mex

org p:startfft
fft points,data,odata,coef

opt cex
org p:start
jsr initialize

do #217,_endrun
jsr readdata
jsr findmindist
jar accumdist
jsr traceback
jsr outputdata

_endrun
nop
swi

; this initialization routine initializes register and
; modifiers as well as clearing the memeory. The constellation
; is also loaded into memory here. The accumulated distance
; array is set so that state zero starts out at a value of
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; zero and all others start out. larger, forcing the paths
; to merge at the zero states.

initialize
move #$ffff,mO ;linear addressing
move #127,ml ;modulo 127 addressing
move #$ffff,m2 ;linear addressing
move #$ffff,m4 ;li;4ar addressing
move #127,m5 ;modulo 127 addressing
move #15,m6 ;modulo 15 addressing
move #Orl
clr b #$O,rO

clr a rO,r5
do #256,clrmem
move a,x:(rO)+ b,y:(rS)+

clrrzrm
move #tables+l,r7
move #$400000,al
rep #7
move al,x:(r7)+

move #J jrbI
move bl,x:stoir6

move #odata-16,rO
move rO,r2
move #O,xO
move #O,yO
do #16,_clrreg
move xO,x:(rO)+
move yO,y:(r2)+

_clrreg

Now load full scale values of the constellationin the table
location.

move #location,rO
move rO,r4
move #mfour,a ;Real Imag
move #one,b
move a,x:(rO)+ b,y:(r4)+ ; -4 1
move #zero,a
move #mthree,b
move a,x:(rO)+ b,y:(r4)+ ; 0 -3
move #one,b
move a,x:(rO)+ b,y:(r4)+ ; 0 1
move #four,a
move a,x:(rO)+ b,y:(r4)+ ; 4 1
move #mone,b
move a,x:(rO)+ b,y:(r4)+ ; 4 -1
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move #zero,a
move l/three,b
move a,x:(rO)+ b,y:(r4). 0 3
move #mone,b
move a,x:(rO). b,y:(r4). 0 -1
move #wafour,a
move a,x:(rO)+ b,y:(r4)+ -4 -1
move #mtwo,a
move #three,b
move #mone,yl
move a,x:(rO)+ b,y:(r4)+ ;-2 3
move a,x:(rO)+ y1,y:(r4)+ ;-2 -
move #/two,a
move a,x:(rO)+ b,y: (r4)+ ;2 3
move a,x:(rO)+ yl,y:(r4)+ ;2 -1
move #o'ne,b
move #mthree,yl
move a,x:(rO)+ yl,y:(r4)+ ;2 -3
move a,x:(rO)+ b,y:(r4)+ ;2 1
move #mtwo,a
move a,x:(rO)+ yl,y:(r4)+ ;-2 -3
move a,x:(rO)+ b,y:(r4). -2 1
move #one,a
move a,xO
move #mthree,a
move #/two,b
move b,yO
move #mtwo,b
move a,x:(rO)+ b,y:(r4)+ -3 -2
move xO,x:(rO)+ b,y:(rle)+ ;1 -2
move a,x:(rO)+ yO,y:(r4) ;-3 2
move xO,x:(rO)+ yO,y:(r4)+ ;1 2
move llthree,a
move a,xO
move #mone,a
move xO,x:(rO)+ yO,y:(r4)+ ;3 2
move a,x:(rO)+ yO,y:(r4)+ ;-1 2
move xO,x:(rO)+ b,y:(r4). 3 -2
move a,x:(rO). b,y:(r4)+ ;-2 -1
move #one,a
move #zero,b
move b,yO
move #four,b
move a,x:(rO)+ b,y:(r4). 1 4
move #mthree,xO
move xO,x:(rO)+ yO..y:(r4)+ ;-3 0
move a,x:(rO)+ yO,y:(r4)+ ;1 0
move #mfour,b
move a,x:(rO)+ b,y:(r4). 1 -4
move #mone,a
move a,x:(rO). b,y:(r4)+ ;-1 -4
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move #three,xO
move xO,x:(rO)+ yO,y:(r4)+ ; 3 0
move a,x:(rO)+ yO,y:(r4)+ ; -1 0
move #four,b
move a,x (rO)+ b,y:(r4)+ ; -1 4

move #odata,xO
move #$eff,y0

move xO,y:$424
move yO,y:$4 2 5
rts

;readdata reads in the data from the output of the FFT.

readdata
move y:$424,rO
nop
move rO,yO
move #odata+100.,a
cmp yO,a

seq _delzero
move x:storr6,r6
move #>offset,xO
move x:(rO),a
add xOa y:(rO)4,b
add xO,b a,x:(r6)
move b,y!(r6)+
move r6,x:storr6
move rO,y:$424
rts

_delzero
move #odata+155,rO
nop
rts

;the minimum distance is found to the closest point in every
; state and stored. The values are stored so that indexing is
; made easier, state 0,2,3,1,4,7,6,5. This will greatly reduce
; the number of cycles needed later. A smoothing function is

used to accumulate distances in the accumulated table so
this minimum distance is multiplied by .1.

;The subroutine findmindist compares the received points to boundaries
;on the constellation. Once a bounded area is found the closest eight
;points are read out of the boundary data file and used to update the
;path distances.

findmindist

move x:-(r6),a
move #one,xO
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cmpm xO,a y:(r6),b
jgt bigone ;x~l
cmpm xO,b #boundryl,r2
J7~t continue ;x~l,y<l, load r2 with boundry 1

;and continue
move #two,xl
cmpm xl,b #jboundry4,r2
jlt continue ;x<l,y>landy<2, load r2 i'ith

;bcundrys., go on
move #/boundry6,r2
imp continue ;x<l,y>2, load r,2 with boundry6

;and continue
bigone w~ove #two,xl

cmpm xl,a
jgt bigtwo ;x>2, imp to that case
cmpm xO,b #boundr~y2,r2
lit continue ;x>l and x<2, y1l load bovridry2'(

;and continue
cmpm xl,b #boundry5,r2
lit continue ;x>1,y<2 load boundry 5 and

;continue
bigtwo

cmpm xO,b #boundry3,r2
jit continue ;x>2 and y<1 so load boundry3

;and continue
abs a #tWo,yO
abs b a~xi
sub yO,a b,yl
sub xO,b
cmpm a,b yl,b
jgt greateryl
cmp yO,b #boundry7,r2
lit continue
move #boundryl2,r2
imp continue

greateryl
sub yO,b xl,a
sub xO,a
cmpm a,b xlis
jgt greatery2
cmp yO,a #boundryiO,r2
lit continue
move yl,b
cmp yO,b #boundryll,r4"
lit continue
move #boundry9,r?
imp continve

greatery2
cmp yO,a #boundry8,r2
lit continue
move Obourndryl 3, r2
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continue
cdr a x: (r6) xl
cmp xl,a y: (r6) yl
jgt negx
cmp vl,a #24,n2
jgt posxnegy

Posxposy
jmp findist

posxnegy
move x:(r2)+n2,xO ;update r2 by 24
jmp findist

negx
cmp yi,a #8,n2
jgt negxnegy

negxposy
move x:(r2)+n2,xO ;update r2 by 8
imp findist

negxiiegy
move x:(r2)+n2,xO ;update r2 by 16
move x:(r2)+n2,xO

;The subroutine faIndist finds the euclidean distance between the received
;point and the eight points read out of the boundary table. The x and y
;coordinates are subtracted, squared and added. The square root is not
;performed.

fi ~i LLst
move x:r(r2)+,rO
move #tables,r4
move x:(rO),a
sub xl,a y:(rO),b
sub yl,b a'xO
mpy xO,xO,a b,yO
mac yO,yO,a x:(r2)+,rO
move #small,xO a,yO
mpy xO,yO,a
move x:(rO),a a,y:(r4)+
sub xl,a y:(rO),b
sub yl,b 8'xO y:(r4)e,yO
mpy xO,xO,a b,yO
mac yO,yO,a x:(r2)+,rO
move #small,xO a,yO
apy xO,yO,a y:(r4)+,b
move x:(rO),a a~y:(r4)-
sub xl,a y:(rO),b
sub yl,b a,xO y,:(r4)-,yO
mpy xO,xO,a b,yO
mac yO,yO,a x:(r2i.,rO
move #small,xO a'yO
inpy xO,yO'a
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move x:(rO),a a,y:(r4)+
sub xl,a y:(rO),b
sub yl,b a,xO
mpy xO~xO,a b,yO
Mac yO,yO,a x:(r2)+,rO
move #small,xO a,yO
mpy x0y,Y0a
move x:(rO).,a a,y:(r4).
sub xl,a y:(rO),b
sub yl,b a,xO y:(r4).,yO
mpy xO,xO~a b,yO
mac yO,yO,a x:(r2)+,rO
move #small,xO a,yO
mpy xO,yO,a
move x:(rO),a a,y:(rI.)+
sub xl,a y:(rO),b
sub yl~b a,xO y:(r4)+,yO
mpy xO,xO,a b,yO
Mac yO,yO,a x:(r2)+,rO
move #small,xo a,yO
mpy xO,yO,a y:(r4)+,b
move x:(rO),a y:r)
sub xl,a y:(rO),b
sub yl,b a,xO
mpy xO,xO,a b,yO
mac yO,yO,a x:(r2)+,rO
move l/small,xO a,yO
mpy xO,yO,a
move x:(rO),a a,y:(r14)-
sub xl,a y:(rO),b
sub yl,b a,xO
mpy xO,xO,a b,yO
mac yO,yO,a x:(r2)+,rO
move #small,xO a,yO
mpy xO,yO,a
move a,y:(r4)
rts

;the accumulted distance routine adds the smallest distaince
;from the previously computed table for all jpathes going i-
;a state and does this for all eight states.

accumdist
dlr a #tables,rO
move #$7fffff,al
move rO,r4
move #temp,r2
move f/3,mO
move mO,m4
move #2,nl
move nl,n5
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move rl,r5

;Distances in the accumulated distance table are added to distances in the
;path table and compared for the four paths. This is done by incrementing
;through a specially ordered path table.

;find minimum distance to state zero
do #4,statezero
move x:(rO),xO y:(r4),b
add xO,b
cmp b,a
tge b,a rO,r3
tge b,a r4,r7
move x:(rO)+,xO y:(r4)+,b

statezero
move r3,x:(rl)+nl
move a,x:(r2)+ y:(r4)+,b
clr a r7,y:(r5)+n5
move #$7fffff,al

;find minimum distance to state two
do #4,statetwo
move x:(rO),xO y:(r4),b
add xO,b
cmp b,a
tge b,a rO,r3
tge b,a r4,r7
move x:(rO)+,xO y:(r4)-,b

statetwo
move r3,x:(rl)+nl
move a,x:(r2)+ y:(r4)+,b
clr a r7,y:(r5)+n5
move #$7fffff,al

;find minimum distance to state four
do #4,statefour
move x:(rO),xO y:(r4),b
add xO,b
cmp b,a
tge b,a rO,r3
tge b,a r4,r7
move x:(rO)+,xO y:(r4)+,b

statefour
move r3,x:(rl)+n],
move a,x:(r2)+ y:(r4)4,b
clr a r7,y:(r5)+n5
move #$7fffff,al

;fitad minimum distance to state six

?8



do #4,statezsix
move x:(rO),xO y(4,
add xO,b
cmp b,a
tge b,a rO,r3
tge b,a r4,r7
move x:(rO)+,xO y:(r4)-,b

statezsix
move r3,x:(rl)-nl
move a,x:(r2)+
move r7,y:(r5)
move #tables+4,r4
move r4,rO
move x:(rl)-nl,a
clr a x:(rl)-,b
move #$7fffff,al
move rl,r5

;find minimum distance to state one
do #4,stateone
move x:(rO),xO y:(rI.),b
add xO~b
cmp b,a
tge b,a rO,r3
tge b,a r4,r7
move x:(rO)+,xO y:(r4)+,b

stateone
move r3,x:(rl)+nl
move a,x:(r2)+ y:(r4)+,b
clr a r7,y:(r5)+n5
move #$7fffff,al

;find minimum distance to state three
do #/4,statethree
move x:(rO),xO y:(r4),b
add xO,b
cmp b,a
tge b,a, rO,r3
tge b,a r4,r7
move x:(rO)+,xO y:(r4)-,b

statethree
move r3,x:(rl)+nl
move a,x:(r2). y:(r4).,b
clr a r7,y:(r5).n5
move #$7fffff,a1
move (r4).

;find minimum distance to state five
do #4,statefive
move x:(rO),xO y:(r4).,b
add xO~b
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cmp b,a
tge b,a rO,r3
tge b,a r4,r7
move x:(r0V4,xO y:(r4)-,b

state! ive
move r3,x:(rl)+nl
move a,x:(r2)+ y:(r4)-,b
clr a r7,y:(r5)+n5
move #$7fffff,al

;find minimum distance to state seven
do #4,stateseven
move x:(rO),xO y:(r4),b
add xQ,b
cmp b,a
tge b,a rO,r3
tge b,a r4,r7
move x:(rO)+,xO y:(r4)+,b

stateseven
move r3,x:(rl)+
move a,x:(r2)+ y:(r4)+,b
dlr b r7,y:(r5)+
move #$7fffff,bl

;now move new accumulated distances into the accumulated
;distance table from the temporary table also find the min
;distance state and store in r4 which is no longer used

move #$ffff,mO
move #$ffff,m4
move #temp,r3
move #tables,rO
move #large,xl
move #2,nO
do #14,endtable
move x:(r3)+,xO
mpy xl,xo,a
cmp, a,b a,xi(rO).nO
tge a,b rO,r4

endtable
move Otables+l,rO
do #A,endtablex
move x:(r3)+,xO
mpy xl~xO,a
cmp a,b a,x:(rO)+nO
tge a,b rO,r4

endtablex

;store in rO instead of r4

move r4,rO
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move #8,nl
move (rO)-nO
rts

;the traceback routine now goes back through every time period
;starting with the current time period and finds the state
;from which the path came from one time period previous. At
;the end of this search, the last state found will also point
;to the path at that state, which is the output of the
;trellis.

traceback

;find the displacement from the pointer to table and store
;value in n4

move #tables,nO
move (rl)-nl
lua (rO)-nO,n5
move rl,r5
do #15,endtrace
move (rl)-nl
move x:(r5+n5),rO
move rl,r5
lua (rO)-nO,n5

endtrace
move #location,rO
move y:(r5+n5),a
rts

;the output data routine unscrambles the path order and finds
;one of the four points on the constellation coresponding to
;the output state which is closest to the original input at
;that time period.

outputdata
move a,b
move #>$bl,xO
cmp xOa #>$b2,yO
teq yO,b
cmp yO,a #>$b3,xO
teq xO,b
cmp xOa #>$bl,yO
teq yO,b
move #>$b5,xO
cmp xOa #>$b7,yO
teq yO,b
cmp yO,a
teq xODb
move M,r2
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move #/tables,n2
move x:storr6,r6
lua (r2)-n2,n3
move n3,a
asi a

asi
move a,nO
move r6,r3
move #>$7fffff,xi
move r4,rO
do #4,endout
move x:(r3),a y:(r6),b
move x:(rO)+,xO y:(rle)+,yO
sub xO,a
sub yO,b a,xO
mpy xO,xO,a b,yO
mac yO,yO,a
tfr a,b xi~a
cmp xi,b
tit b,a rO,r7
move a,xl

endout
clr a (r7)-
move #location,nO
move r7,rO
move #Sf,ai
lua (rO)-nO,r7
move r7,xO
and xO,a
jsr diff
move y:$425,rO
flop
move aO,y:(rO)+
move rO,y:$425
rts

;The subroutine diff differentially decodes the two most significant bits.
;Each bit is stored in its own memory and the bits are decoded using
;Qin = Yin EOR Yin-i, Q2n = (Qin AND Yin-i) EOR Y2n-i EOR Y2n. The four
;bit symbol is formed and output.

diff
move #ynow43,rO
move #>$i,xO
move #ypast,r7
do #4,diffloopl
and xO,a a,xi
move al,x:(rO)-
move xi,a
asr a
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diffloopl
move x:(rO)+,a y:(r7)+,yO
move x:(rO)+,a y:(r7)-,yl
move x:(rO)-,b a,y:(r7)+
move b,y:(r7)-
eor yO,a a,xO
eor yl,b a,xl
and yO,a b,yl
eor yl,a xl,b
move b~x:(rO)+
move a,x:(rO)-
clr a
clr b
do #4,diff2
move x:(rO)+,bO
addi b,a

diE f2
rts
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